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A b s t r a c t

Introduction: This study aimed to determine the regulatory mechanism of 
miR-26b in myocardial infarction (MI)-induced cardiac remodeling through 
apoptosis. 
Material and methods: An MI rat model was established by left coronary 
artery ligation. Microarray data were analyzed to distinguish differentially 
expressed genes in MI. miR-26b was found to be poorly expressed, whereas  
ring finger protein 6 (RNF6) was highly expressed in MI. Consequently,  
miR-26b was identified to target RNF6 using dual-luciferase reporter assay 
and bioinformatics prediction. Furthermore, rats injected with a  lentiviral 
vector expressing miR-26b mimic and/or RNF6 were used to evaluate the 
role of miR-26b and RNF6 in regulating cardiac function, infarct size, and 
cardiomyocyte apoptosis. 
Results: miR-26b overexpression improved cardiac function and increased 
left ventricular end-diastolic and end-systolic diameters. Meanwhile, incre-
ased miR-26b expression decreased infarct size and cardiomyocyte apop-
tosis. Moreover, RNF6 overexpression counteracted the role of miR-26b in 
cardiac function. Additionally, an in vitro cell model illustrated that miR-26b  
upregulation could increase cell viability and reduce apoptosis, whereas 
RNF6 overexpression reversed its effect. We also found that the miR-26b 
mimic could negatively modulate RNF6 expression to inactivate the ERα/
Bcl-xL axis. 
Conclusions: miR-26b plays a protective role against cardiac remodeling af-
ter MI through inactivation of the RNF6/ERα/Bcl-xL axis, supporting miR-26b 
and RNF6 as potential therapeutic targets for MI.

Key words: myocardial infarction, cardiac remodeling, microRNA-26b, ring 
finger protein 6, cardiac function, rats

Introduction

Myocardial infarction (MI) is the prevalent sign of adverse left ventric-
ular (LV) remodeling and heart failure (HF), and a major trigger of mor-
bidity and death worldwide [1, 2]. Despite the combined use of pharma-
cological and emergency reperfusion treatments, adverse LV remodeling 
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remains associated with unfavorable outcomes 
[2, 3]. Hence, the development of new treatment 
schemes able to effectively suppress or reverse 
adverse postischemia LV remodeling and dysfunc-
tion is needed. MicroRNAs (miRs), which are small 
noncoding RNAs, can modulate gene expressions 
following transcription [4], and it is estimated that 
most genes and cell processes are regulated by 
molecules such as miRs [5, 6]. miRs are also relat-
ed to various diseases [7], including cardiovascular 
diseases [8]. Cardiac remodeling (CR) is the most 
interesting phenomenon in such conditions. Dis-
tinct miRs that play a vital role in cardiomyocyte 
hypertrophy include miR-208, -133, and -212/132 
[9–11], whereas miR-21, -30, -133, and, -29 have 
been confirmed to be involved in fibrosis [12–16]. 
In this aspect, the relevance of miR-26a/b in some 
cardiac diseases has been established [17–23]. 
Taken together, these observations confirmed 
the hypothesis of miR-26b being a potential tar-
get for ameliorating cardiac function. Remarkably, 
a  study demonstrated that miR-26a suppresses 
breast cancer cell growth by inhibiting RNF6/ERα/
Bcl-xL signaling [24]. Accordingly, we hypothesized 
that miR-26b is involved in CR after MI. The pres-
ent study was conducted to verify this hypothesis 
based on an MI rat model that was established 
by left coronary artery ligation and to assess the 
potential regulatory mechanism associated with 
RNF6/ERα/Bcl-xL signaling.

Material and methods

Animals

Animal experiments were approved by the 
Institutional Animal Care and Use Committee of 
the North Sichuan Medical College (No. 064/11 
and R13-5424). All in vivo experiments were 
conducted using male adult Wistar rats (weight: 
250–300 g). 

Myocardial infarction rat model and miR 
profiling

In rats, MI was induced by ligating the left an-
terior descending artery, as previously described 
[25, 26]. On day 14 after MI induction, cardiac 
tissues were obtained for miR microarray. MiR 
expression was profiled using concentrated sam-
ples of six rats from each group at all time points 
on day 14 after MI induction, as previously de-
scribed [27].

Construction of a lentivirus vector

HEK293T cells in the logarithmic phase were 
employed for lentivirus packaging. After tryp-
sinization and counting, cells (5 × 105 cells/ml) 
were inoculated into a  10-cm2 culture dish. The 

complete medium was replaced with serum-free 
medium 2 h before cell infection. When cell con-
fluence reached approximately 80%, cells were 
infected with Lipofectamine 2000. Next, 2.5 ml 
of solution A  (Opti-MEM supplemented with  
25 μg of GV320 lentiviral vector expressing 
miR-26b mimic, miR-NC, RNF6, or empty vector;  
12.5 μg of pHelper1.0; and 10 μg of pHelper2.0) 
and solution B (10 μl of Lipofectamine 2000 and 
2.5 ml of Opti-MEM) were mixed at room tem-
perature for 20 min. HEK293T cells were cultured 
with a mixture of solutions A and B at 37°C with 
5% CO2. After 8 h of culture, cells were completely 
washed with phosphate-buffered saline, removed 
from cultured medium, and continued to be cul-
tured with a medium containing 10% fetal bovine 
serum for 48 h. Subsequently, the supernatant of 
HEK239T cells was collected and centrifuged at 
2000 g at 4°C for 10 min to remove cell debris. 
Cells filtered using a 0.45-μm filter were collected 
and preserved at –80°C.

Animal treatment

Control rats (control group; sham-operated, 
punctured without coronary artery ligation) and 
MI rat models (model group) were not subjected 
to any delivery of lentivirus, and the two groups 
comprised 20 male rats each. The model group  
(n = 80, 50% male and 50% female) rats were 
injected with the lentivirus through the tail vein: 
miR-NC, miR-26b, combination of miR-26b and 
lentiviral-NC, and combination of miR-26b and 
RNF6; each group comprised 10 male and 10 fe-
male rats. The lentivirus injection (1 × 107 PFU per 
rat) through the tail vein was performed within 
300 s after modeling and 3 days after modeling 
again. On day 13 after MI induction, cardiac func-
tion was assessed with the Vevo 770 ultrasound 
imaging system (Visual Sonics). Then, the rats 
were euthanatized, and the cardiac tissues were 
collected for subsequent experiments.

Echocardiography

On day 7 after MI induction, the rats were 
anesthetized with 1% isoflurane. During echocar-
diography, isoflurane (1.5–2.0%) and oxygen were 
supplied to maintain anesthesia. Cardiac function 
parameters including LV end-diastolic diameter 
(LVEDD) and volume (LVEDV) and LV end-systolic 
diameter (LVESD) and volume (LVESV) were de-
termined and recorded using ultrasound biomi-
croscopy InviVue (Vevo 770; Visual Sonics) with 
an RMV 704 probe of 40 MHz central frequency. 
Thereafter, LV fractional shortening (LVFS) and 
ejection fraction (LVEF) were acquired [28], and 
the average values was determined after three 
successive cardiac cycles.
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Tissue collection

The rats were euthanized on day 14 after MI 
induction, and their hearts were quickly excised. 
Myocardial tissues were extracted from the apex 
of the heart to the ligature site along the short 
axis using a  blade, and the tissues were sliced 
into 2-mm-thick sections, followed by triphenyl 
tetrazolium chloride (TTC) staining. Meanwhile, 
myocardial tissues were extracted from the infarct 
areas. Parts of myocardial tissues were preserved 
for subsequent quantitative reverse transcription 
polymerase chain reaction (RT-qPCR) and western 
blotting (WB). 

Cell cultivation and transfection

H9C2 cells and HEK293T cells were purchased 
from ATCC and cultivated in accordance with the 
manufacturer’s instructions. To investigate the ef-
fect of H2O2 treatment on miR-26b expression and 
relevant objective genes, cells were inoculated for 
1 day, preserved in a  standardized medium, and 
maintained under normoxic and H2O2 (100 μM) 
conditions for 2 days. Cells were subsequent-
ly collected for RT-qPCR. To evaluate the effects 
of RNF6 and miR-26b in vitro, cells were treated 
with LNA-modified miR-26b mimic, NC mimic, or 
a combination of miR-26b with pcDNA3-NC or pcD-
NA3-RNF6 at different concentrations and main-
tained under normoxic or H2O2 conditions for two 
days. Furthermore, cells were obtained for RT-qPCR, 
WB, and cell proliferation and apoptosis assays.

Cell growth

Cell viability capacity was evaluated using the 
CCK-8 assay according to the manufacturer’s in-
structions. Cells were seeded into 96-well plates, 
CCK-8 (10 μl) was added to each well and cells 
were incubated for a further 2 h at 37°C. Optical 
density was measured at 450 nm using an au-
to-microplate reader (infinite M200, Tecan, Swit-
zerland), as mentioned previously [29, 30].

Dual-luciferase reporter assay (DLRA)

TargetScan Human 7.2 (http://www.target-
scan.org/vert_72/) was applied to identify the 
miR-26b-5p-binding sites on RNF6 3′-UTR. After 
amplification, the fragments of RNF6 mRNA with 
possible mutants (MUT) or WT miR-26a-5p-bind-
ing sites were cloned into a pGL3 vector (50 ng), 
which were then cotransfected to HEK293T cells 
for 2 days with miR-26b-5p or miR-NC (100 ng) 
through Lipofectamine 2000 (Invitrogen, USA). 
The pRL-TK-Renilla vector (25 ng) that provided 
the constitutive expression of Renilla luciferase 
was cotransfected as an internal control to correct 
the differences in both transfection and harvest 

efficiencies. In the end, relative luciferase activity 
was detected by a GloMax 96 Luminometer based 
on the recommendations of Dual-Glo Luciferase 
Assay System (Promega, Madison, WI, USA). All 
experiments were performed in triplicate. 

Western blotting

Cells were treated with the protease inhibitor 
cocktail (Roche Applied Science) and radioim-
munoprecipitation assay buffer (pH 8.0). Protein 
concentration was measured using a bicinchonin-
ic acid kit. Proteins were separated with sodium 
dodecyl sulfate polyacrylamide gel electropho-
resis and electrically added to polyvinylidene di-
fluoride membranes (Millipore, MA, USA). The 
available sites were blocked by incubating with 
primary antibodies at 4°C overnight and subse-
quently rinsed with Tris-buffered saline and tween  
20 (TBST). Moreover, immunoblots were observed 
by cultivating cells with secondary antibodies for 
60 min at room temperature. The bands observed 
on membranes were rinsed with TBST and visual-
ized using the Thermo Maximum Sensitivity Sub-
strate Kit (MA, USA). 

Reverse transcription polymerase chain 
reaction

Total RNA was extracted from cells and tissue 
specimens (0.100 g) with TRIzol (Invitrogen), and 
the concentration was determined using Nano-
Drop2000 (OD

260). cDNA was prepared through 
reverse transcription using an Oligo(dT)20 prim-
er, and the MMLV First-Strand Synthesis Kit (In-
vitrogen) for RT-qPCR. RT-qPCR detection of U6 
and miR-1225 was performed using relevant kits, 
according to the manufacturer’s instruction. The 
RT-qPCR conditions were as follows: denaturation 
for 10 min at 95°C, 40 denaturation cycles for 15 s 
at 95°C, and extension for 40 s at 60°C. Glyceral-
dehyde-3-phosphate dehydrogenase or U6 mRNA 
expressions served as the internal control. The  
2–ΔΔCT method was performed to measure the tar-
get mRNA expression levels. All procedures were 
conducted in parallel three times.

Flow cytometry

Cell apoptosis was assessed by flow cytometry 
(FCM) with an Annexin V-FITC/PI apoptosis detec-
tion kit (BD Pharmingen). Cells were suspended in 
a binding buffer (0.02 ml) and exposed to Annexin 
V-FITC (0.01 ml)/PI (5 μl). Cell apoptosis rates were 
determined through FCM.

Triphenyltetrazolium chloride staining

The myocardial infarct size was determined by 
triphenyltetrazolium chloride (TTC) staining. Brief-
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ly, the rat heart was sliced into small sections which 
were incubated with 1% TTC (A610558, Sangon-
Bootech Co, Shanghai, China) for 30 min, fixed with 
10% formalin for 10 min, and then observed after 
rinsing. The infarct area (pale white) and the area 
at risk (brick red) were measured using Image-Pro 
Plus 6.0 software. The infarct size (%) was calculat-
ed as infarct area/area at risk × 100%.

Data analysis

All data are presented as mean ± standard de-
viation (SD). ANOVA was applied for determining 
differences among groups and the t-test for deter-
mining differences between two groups. A p-value 
of < 0.05 was considered statistically significant.

Results

miR expression profiles after myocardial 
infarction

To explore the miR expression profiles in car-
diac impairment, the expression profiles of miRs 
isolated from cardiac tissues from the model and 
control groups (six samples per group) were de-
termined on day 14 after MI induction. Differen-
tially expressed genes (DEGs) were selected from 
the GSE46395 microarray data with an adjusted 
p-value of < 0.05 and |log2FCM| of > 2.0 as the 
threshold, and a heatmap of the top 17 DEGs was 
constructed (Figure 1 A). Furthermore, miR-26b 
expression in myocardial tissues was determined 
using RT-qPCR after successful establishment of 
the MI rat model, confirming the decrease in miR-
26b expression level in myocardial tissues from 
the model group compared with those from the 
control group (Figure 1 B).

MiR-26b targets RNF6 3′-UTR

Subsequently, we performed bioinformatics 
prediction to identify the putative target of miR-
26b. The obtained data indicated that RNF6 3′-
UTR has binding sites on miR-26b (Figure 2 A).  
Dual-luciferase reporter assay data then con-
firmed that RNF6 was a target gene of miR-26b, 
and miR-26b mimic transfection can inhibit the 
downregulation of luciferase activity via wild-type 
RNF6 (Figure 2 B). To further examine the effect of 
miR-26b upregulation on RNF6 expression in the 
model group, lentiviral-miR-26b/NC was used and 
injected in the model group to regulate miR-26b 
expression. We first detected miR-26b expres-
sion in the model group. RT-qPCR showed that 
lentiviral-miR-26b administration resulted in ele-
vated miR-26b expression levels compared with 
those in the lentiviral-miR-NC group (Figure 2 C). 
Then, RT-qPCR and WB demonstrated that MI-in-
duced cardiac modeling induced RNF6 expression, 
whereas miR-26b upregulation significantly de-
creased RNF6 expression in both mRNA and pro-
tein levels (Figures 2 D, E), suggesting that RNF6 
expression was negatively correlated with miR-
26b in myocardial tissues from the model group. 

miR-26b improved cardiac function after MI 
by targeting RNF6

RNF6 was a  target gene of miR-101; thus, 
its effects on MI were explored in the model 
group injected with lentiviral-miR-26b, lentivi-
ral-miR-NC, lentiviral-miR-26b+lentiviral-NC, or 
lentiviral-miR-26b+lentiviral-RNF6. Subsequently, 
the indicators of cardiac function (LVEDD, LVESD, 
LVFS, and LVEF) were measured, aiming to dis-

Figure 1. MicroRNA-26b (miR-26b) was a downregulated gene in cardiac tissues from rats with MI. A – The heat-
map of the top 17 differentially expressed genes (DEGs) in microarray data of GSE46395. The abscissa and ordi-
nate present sample number and DEGs, respectively, and the upper right histogram represents color grade. Each 
rectangle in the image represents the expression of a sample. B – miR-26b expression in myocardial tissues in the 
control and MI groups determined by RT-qPCR 

MI – myocardial infarction, **p < 0.01 vs. control group only.
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Figure 2. MicroRNA-26b (miR-26b) targets RNF63′-UTR. A – Bioinformatics analysis indicating that miR-26b pos-
sesses a binding site on RNF6 3′-UTR. B – DLRA was conducted, followed by dual-luciferase reporter assay with 
a wild-type or mutated RNF6 mRNA, and miR-26b or NC mimic were cotransfected into HEK293T cells. MI rats used 
were injected with lentiviral vectors expressing miR-NC or miR-26b. C – RT-qPCR showed miR-26b expression in 
myocardial tissues from MI rats. D, E – RT-qPCR and WB showed RNF6 mRNA and protein expression in myocardial 
tissues from MI rats

*p < 0.05, **P < 0.01 vs. indicated/control groups, ##p < 0.01 vs. MI groups. 

B C

D E

150

100

50

0

150

100

50

0

300

200

100

0

RN
F6

 m
RN

A
 e

xp
re

ss
io

n 
(%

)

m
iR

-2
6b

 e
xp

re
ss

io
n 

(%
)

RN
F6

 m
RN

A
 e

xp
re

ss
io

n 
(%

)
miR-26b 5’-UCGGAUAGGACCUAAUGAACUU-3’ 

RNF6 WT 5’-UUGCUAUAUAUAUGUUACUUGAA-3’ 

RNF6 MUT 5’-UUGCUAUAUAUAUGGUGCGUUAG-3’

A

DLRA miR-26b

RNF6

 miR-NC +  miR-NC + miR-26b + miR-26b +
 WT MUT WT MUT

 Normal MI MI +  MI +
   lentiviral-NC lentiviral-
    miR-26b

 Normal MI MI +  MI +
   lentiviral-NC lentiviral-
    miR-26b

 Normal MI MI +  MI +
   lentiviral-NC lentiviral-
    miR-26b

cover the effects of miR-26b and RNF6 on cardiac 
function. Echocardiography revealed that LVEDD 
and LVESD were significantly higher, whereas LVFS 
and LVEF were markedly lower in the model group 
compared with the sham-operated group (Fig- 
ures 3 A–D). Lentiviral-miR-26b administration led 
to reduced LVEDD and LVESD and elevated LVFS 
and LVEF in the model group. However, compared 
with the MI rats injected with lentiviral-miR-26b, 
those injected with lentiviral-miR-26b + lenti-
viral-RNF6 displayed high LVEDD and LVESD but 
low LVFS and LVEF, contradicting the results of 
miR-26b upregulation. These data suggested that 
MI-induced cardiac dysfunction can be relieved 

with miR-101 upregulation and that RNF6 was in-
volved in this process.

miR-26b reduces myocardial infarct area 
in MI rats by targeting RNF6

Triphenyl tetrazolium chloride staining was 
performed to explore the effects of miR-26b 
and RNF6 on myocardial infarct size in MI rats. 
Compared with control rats, MI rats had a  larger 
heart volume, a  thinner LV wall, and an obvious 
white myocardial infarct area. The myocardial 
infarct area in MI rats significantly decreased af-
ter treatment with lentiviral-miR-26b mimic but 
significantly increased after treatment with len-

RNF6

Actin
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tiviral-miR-26b+lentiviral-RNF6 (Figures 4 A, B). 
Taken together, the results show that miR-26b 
overexpression contributed to decreased myocar-
dial infarct size in MI rats, whereas RNF6 overex-
pression reversed this effect. 

miR-26b suppresses cardiomyocyte 
apoptosis in MI rats by targeting RNF6

The effects of miR-26b and RNF6 on cardio-
myocyte apoptosis were determined by testing 
two typical apoptosis markers, i.e., Bcl-2 and Bax, 

in miR-26b or RNF6 restoration in cardiomyocytes. 
As demonstrated by RT-qPCR and WB, MI rats 
displayed lower Bcl-2 and higher Bax expression 
levels in both mRNA and protein levels than con-
trol rats (Figures 5 A–C). Compared with the MI 
rats injected with empty vector, the MI rats with 
miR-26b upregulation had considerably higher 
Bcl-2 and lower Bax expression levels in cardio-
myocytes. Meanwhile, the MI rats injected with 
lentiviral-miR-26b and RNF6-overexpressing vec-
tor presented with markedly lower Bcl-2 and high-

Figure 3. MicroRNA-26b (miR-26b) overexpression improved cardiac function in MI rats. The MI rats used were 
injected with lentiviral vectors expressing miR-NC, miR-26b, miR-26b+NC, and/or miR-26b+RNF6. A – Left ventric-
ular end-diastolic diameter (LVEDD) in control and MI rats. B – Left ventricular end-systolic diameter (LVESD) in 
control and MI rats. C – Left ventricular ejection fraction (LVEF) in control and MI rats. D – Left ventricular fractional 
shortening (LVFS) in control and MI rats

*p < 0.05, **p < 0.01 vs. control rats; #p < 0.05 vs. MI rats; &p < 0.05 vs. MI rats subjected to both lentiviral vectors expressing 
miR-26b. 
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er Bax expression levels compared with MI rats 
injected with lentiviral-miR-26b (Figures 5 A–C). 
Collectively, miR-26b upregulation or RNF6 resto-
ration could contribute to inhibited or promoted 
cardiomyocyte apoptosis after MI, respectively.

miR-26b upregulation promoted survival 
and inhibited cell apoptosis of H2O2-treated 
H9C2 cells

H2O2 has been widely reported to induce injury 
and apoptosis of cardiomyocytes, and H2O2-treat-
ed cardiomyocytes served as a cell model for MI in 
this study [31]. At first, RT-qPCR and WB showed 
that miR-26b and RNF6 were downregulated and 
upregulated in H

2O2-treated H9C2 cells, respec-
tively, which is consistent with their performance 
in the MI rat model (Figures 6 A–C). Thereafter, 
H2O2-treated H9C2 cells were transfected with 
miR-26b mimic and/or RNF6-overexpressing vec-
tor to induce miR-26b overexpression and RNF6 
restoration. Transfection with miR-26b mimic 
obviously led to an increased miR-26b level in 
cells (Figure 6 A). Meanwhile, cotransfection of 
miR-26b mimic and pcDNA3-RNF6 also caused 

an increase in RNF6 upregulation in H
2O2-treated 

H9C2 cells with a high miR-26b expression level 
(Figures 6 B, C). Furthermore, WB and RT-qPCR 
were performed to assess Bcl-2 and Bax expres-
sion levels. H2O2 treatment downregulated Bcl-2 
expression but upregulated Bax expression. In 
contrast, transfection with miR-26b mimic result-
ed in a  considerably lower Bax expression level 
compared with transfection with NC mimic. miR-
26b overexpression also promoted Bcl-2 expres-
sion (Figures 6 C–E). However, RNF6 restoration 
contributed to an elevated Bax level and attenuat-
ed Bcl-2 level in H2O2-treated H9C2 cells with miR-
26b upregulation (Figures 6 C–E). Flow cytometry 
was also performed to test the apoptosis rate of 
H9C2 cells subjected to different treatments. H2O2 
administration caused significant death of H9C2 
cells, whereas miR-26b upregulation significantly 
reduced the proportion of apoptotic cells to a nor-
mal level. Furthermore, RNF6 restoration in H9C2 
cells with miR-26b upregulation improved the 
apoptosis rate again (Figure 6 F), suggesting that 
miR-26b repressed cell apoptosis of H2O2-treated 
H9C2 cells by mediating RNF6 expression. In addi-
tion, CCK-8 assay was performed to reveal the cell 
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Figure 4. Myocardial infarct size in MI rats was re-
duced in response to elevation of microRNA-26b 
(miR-26b) expression level. MI rats used were in-
jected with lentiviral vectors expressing miR-NC, 
miR-26b, miR-26b+NC, and/or miR-26b+RNF6. 
A – Representative images of myocardial infarct in 
control and MI rats detected by triphenyl tetrazoli-
um chloride staining. B – Percentage of myocardial 
infarct area in control and MI rats

**p < 0.01, ***p < 0.001 vs. control rats. #p < 0.05 vs. MI 
rats. &p < 0.05 vs. MI rats injected with lentiviral vector 
expressing miR-26b.
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Figure 5. MicroRNA-26b (miR-26b) protects car-
diomyocytes against apoptosis in MI rats. The MI 
rats used were injected with lentiviral vectors ex-
pressing miR-NC, miR-26b, miR-26b+NC, and/or 
miR-26b+RNF6. A, B – RT-qPCR was performed to 
determine Bcl-2 and Bax mRNA expression levels in 
myocardial tissues from control and MI rats. C – WB 
was performed to detect Bcl-2 and Bax protein ex-
pression levels in myocardial tissues from control 
and MI rats

**p < 0.01 vs. control rats, #p < 0.05, ##p < 0.01 vs. MI 
rats, &p < 0.05 vs. MI rats injected with lentiviral vector 
expressing miR-26b.
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growth rate. Compared with control cells, H2O2 in-
cubation led to a lower growth rate of H2O2-treat-
ed H9C2 cells, whereas transfection with miR-26b 
mimic caused recovery of their proliferation rate. 
Notably, RNF6 overexpression obviously reduced 
the growth rate of H2O2-treated H9C2 cells, which 
was promoted by miR-26b upregulation (Fig- 
ure 6 G). These data suggested that miR-26b up-
regulation promoted survival and inhibited apop-
tosis of H2O2-treated H9C2 cells by targeting RNF6. 

Discussion

Myocardial remodeling (MR) is one of the main 
changes in cardiac structure, which leads to he-
modynamic imbalance in the presence of patho-
logical stimuli and biomechanical stress. MR in-
volves alterations in structure, size, mass, shape, 
and functions. Its main causes include myocardial 
hypertrophy, cardiomyocyte impairment, angio-
genesis, myocardial fibrosis, and inflammation. An 

obvious cardiomyocyte loss due to diverse insults 
and slower cardiomyocyte regeneration rate is an 
indicator of MR in human and animal models [32]. 
This study profiled miR expression in an MI rat 
model to recognize abnormally expressed cardiac 
miRs with latent expression in adverse CR after 
MI. This study revealed that the change in miR 
expression after MI is relative to that in normal 
conditions. Several miRs with different expression 
were recognized to respond to ischemia-induced 
impairment, and postischemia remodeling was 
associated with myocardial ischemia and CR re-
sulting in HF, such as miR-101, miR-126, miR-202, 
and miR-351 [33]. We observed a significant de-
crease in miR-26b expression level in myocardial 
tissues of rats after MI. miR-26 has various roles 
in modulating key aspects of cell growth, devel-
opment, and activation. miR-26b is extremely 
conservative and serves as a modulator of tumor 
progression [34–36] and other diseases [37–39]. 
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Figure 6. MicroRNA-26b (miR-26b) overexpres-
sion promoted survival and inhibited apoptosis 
of H2O2-treated H9C2 cells. Cells were transfected 
with miR-26b mimic, NC mimic, or miR-26b+pcD-
NA3-NC or miR-26b+pcDNA3-RNF6 and subse-
quently treated with 100 μM H2O2 for 48 h. A, B 
– RT-qPCR revealed miR-26b and RNF6 mRNA ex-
pression levels. C – WB detected RNF6, Bcl-2, and 
Bax protein expression levels. D, E – RT-qPCR de-
tected Bcl-2 and Bax mRNA expression levels

**p < 0.01, ***p < 0.001 vs. control group. ##p < 0.01,  
###p < 0.001 vs. H

2
O

2
 treatment group, &&p < 0.01 vs. 

H
2
O

2
+miR-26b mimic group.
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Figure 6. Cont. F – Effect of miR-26b on cell apoptosis was assessed by Annexin V/PI FCM

**p < 0.01, ***p < 0.001 vs. control group. ##p < 0.01, ###p < 0.001 vs. H
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Recent evidence confirms that the miR-26 fami-
ly performs a vital role in cardiovascular diseases 
by regulating the main signaling pathways such 
as BMP/SMAD1 and targets associated with en-
dothelial cell growth, angiogenesis, and LV func-
tion after MI [40]. A study reported that miR-26b 
was dysregulated during myocardial hypertrophy 
and was involved in cardiomyocyte growth and 
survival. miR-26b overexpression inhibited en-
dothelin-induced hypertrophy and GATA4-related 
transcription as well as enhancing cell sensitivity 
to apoptosis-induced impairment. Moreover, miR-
26b acted on PLC-β1, which then suppressed miR-
26b expression [21]. Zhang et al. reported that 
miR-26b inhibited GSK-3β 3′-UTR and decreased 
β-MHC and ANF expression in CM in vitro, reveal-
ing the possible relevance of miR-26b to regula-
tion of myocardial hypertrophy [41]. In the present 
study, we found that miR-26b upregulation sup-
pressed adverse CR after MI in an MI rat model. 
miR-26b overexpression in MI maintained systol-
ic and contractile functions in a dose-dependent 
manner. LVEDD, LVESD, LVEF, and LVFS are glob-
al nonintrusive measurement indicators of CR, 
which can be used for predicting clinical results 
after MI and applied to a series of cardiovascular 
system-based anti-remodeling treatments [42]. 
An absolute 20% reduction in LVEDD, 15% reduc-
tion in LVESD, and 30% improvement in LVEF and 
LVFS were observed in miR-26b-upregulated cells 
in rats 14 days after MI induction, whereas MI rats 
revealed deterioration in EF, suggesting analogous 
effects of miR-26b in clinical practice, which are 
particularly favorable and relevant to a notable in-
crease in survival rate [42].

Furthermore, we inferred that the underly-
ing mechanism of miR-26b in MI was negatively 
targeting RNF6 and the downstream ERα/Bcl-xL 
axis. RNF6 serves as a promising promoter in can-
cers such as hepatocellular carcinoma (HCC) and 

breast cancer (BC). In HCC, RNF6 knockdown sup-
pressed HCC migratory abilities, EMT, and radiore-
sistance [43]. In BC, an RNF6/ERα/Bcl-xL (herein-
after abbreviated as R/E/B) axis was found to exist 
that facilitated cell proliferation and survival, and 
acting upon the R/E/B axis provided a promising 
treatment choice [44]. However, there is no evi-
dence linking RNF6 to cardiovascular disease. The 
study showed that miR-26b acted on RNF6 mRNA 
and suppressed its expression. miR-26b displayed 
its myocardial protective activity by suppressing 
RNF6 expression and R/E/B signaling in MI rats 
and H

2O2-treated H9C2 cells. RNF6 restoration re-
versed the improved cardiac function and reduced 
myocardial apoptosis induced by miR-26b in vitro 
and in vivo. In addition, the in vitro study suggest-
ed that miR-26b inactivated ERα/Bcl-xL signaling. 
The study data also suggested the role of the 
R/E/B axis as an apoptosis inducer in H2O2-treated 
H9C2 cells, which is in contrast with the findings 
of a previous study in BC cells, possibly because of 
the use of different cell lines and treatment.

We found that miR-26b upregulation protect-
ed against MI-induced CR by inhibiting RNF6 ex-
pression in the MI rat model. Meanwhile, miR-26b 
disrupts the R/E/B axis, indicating that the miR-
26b/RNF6/ERα/Bcl-xL axis could provide deeper 
knowledge on the mechanism underlying MI. Al-
though the present data revealed promising tar-
gets for MI, further efforts are needed to validate 
the effectiveness of miR-26b-targeted therapies in 
clinical treatments. Moreover, the effects of over-
expressed or silenced miR-26b in HF animal mod-
els are expected to be investigated in the future.
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